

CHAPTER HIGHLIGHTS Animation basics Traditional animation techniques 2-D animation techniques: Keyframe Tween Programmed Sa-D animation: Motion capture Kinematics Animating with physics Guidelines for animation in multimedia

PINNACLE OF MODERN MULTIMEDIA

- Animation draws inspiration from each of the other media.
- Computer is a partner in creative expression.
 - It lowered costs and increased ease of creating animation.
 - It supports creative expression through:
 - Interactivity
 - 3-D sensory experience
 - · Embodiment and implementation of rules of behavior.

ANIMATION BASICS

- Animation: rapidly displayed sequence of individual, still images.
- Made possible by "persistence of vision."
 - Images formed on the retina persist for a short period of time after stimulus has disappeared.
 - This physical memory of the retina produces the illusion of motion.

ANIMATION BASICS

- Flipbook technique
 - Still images showing a different stage of motion are created on each page.
 - Pages are "flipped" in rapid succession to view the motion.
 - Animation basics used in flipbook:
 - Quality of motion is based on rate of display.
 - Speed is based on differences between images.
 - Onionskinning: a technique used to draw new image based on the previous image.
 - · Registration: physically aligns images with one another.

5

TRADITIONAL ANIMATION

- Film based process
 - Images are photographed and recorded as separate frames on long strip of transparent film.
 - Film passed in front of light source and animation appeared on a screen.
- Film enhanced possibilities of animation.
 - Multiple reels allowed longer animations.
 - Projectors displayed images at reliable frame rates.
 - Animators could add sound to the motion.

CHALLENGES OF TRADITIONAL ANIMATION

- Number of images to create.
 - 24 frames per second requires 1,440 individual still images for each minute of animation.
 - Methods to generate images include:
 - Shooting on twos cuts number of images in half.
 - Cycle of images can be reused to extend repetitive motion.
 - Holds produce sequence of identical drawings to extend a particular state or action.

7

CHALLENGES OF TRADITIONAL ANIMATION

- Artistic strategies to create realistic world require:
 - Awareness of how things move in the world.
 - Ease-in and ease-out address the physics of motion.
 - Overshooting a resting point addresses kinetic energy of motion.
 - Different components of objects move independently of one another (overlapping motion).
 - Exaggerate motion for dramatic effect using:
 - · Variations in speed
 - Stretch and squash.

Traditional Techniques

- Strategies for achieving motion have been applied to:
 - Paper cut-outs
 - Clay figurines
 - Puppets
 - Natural objects photographed, reposed and re-photographed.

CEL ANIMATION

- Perfected and made popular by Disney studios.
 - Cel: drawings of individual frames made on sheets of celluloid.
 - Drawings were then photographed to produce the animated film.
- Technique that directly influenced development of digital animation.

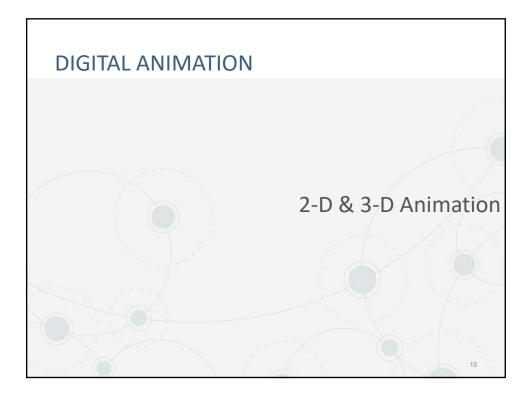
CEL ANIMATION ADVANTAGES

- Artists saved drawing time.
 - Fixed components of a scene were drawn once and layered on the bottom of a stack of celluloid sheets.
 - Moving components were drawn separately and placed on top of the fixed scene components.
- Gave precise control over elements.
 - Individual cel layers could reproduce interdependent, complex motions.

11

CEL ANIMATION ADVANTAGES

- Encouraged division of labor and promoted high artistic standards.
 - Master artists drew key frames or extremes.
 - Assistants drew the tweens.
 - Inkers transferred drawings from paper to celluloid.
 - Opaquers applied colors to the celluloid.
 - Additional specialists included:
 - Producers
 - Directors
 - Script writers
 - Audio specialists
 - Camera operators
 - Checkers.


PRODUCING CEL ANIMATION

- Cost and complexity of creating animation required a carefully defined process.
 - Storyboard: sequence of drawings that sketch out content of major scenes in the production.
 - Pencil test: series of simple sketches that are photographed and projected to test the design of the animated sequences.
 - Scratch track: draft of animation's audio track.
 - Leica reel: working draft of the complete animation.

13

PRODUCING CEL ANIMATION

- Uses specialized equipment in production process.
 - Specialized paints to convey proper hue.
 - Specialized camera and lighting to capture cels.
 - Devices to:
 - Track changes in paths of animated characters.
 - Align and hold the cels for camera shots.
 - Synchronize and edit the final film.
- Cel animation is complex, demanding, and expensive animation.
 - Computers dramatically improved the process.

2-D ANIMATION

- Produced by mimicking basic traditional techniques such as:
 - Flipbook technique
 - Cutout animation technique
 - Rotoscoping
 - Cel animation
- Paint/draw programs are used to create the components.
- Animation software can sequence, set timing, transitions, and produce the final animation.

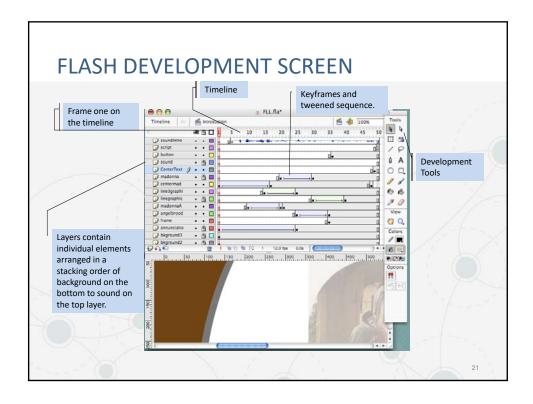
DIGITAL CEL ANIMATION

- Animations are a series of individual frames.
 - Synchronized to one or more sound tracks.
 - Graphics arranged on layers.
 - Major changes identified in keyframes.
 - Illusion of motion produced as series of tweens.

17

ANIMATION SOFTWARE

- Elements of Flash organization.
 - Timeline: horizontal row of frames.
 - Frames: have multiple layers in columns.
 - Layers have stacking order (background elements on lower layers, changing elements on upper layers)
 - Keyframes: define major changes in a frame.
 - Tweens: frames created automatically by software.
 - Onionskinning: assists in drawing changes from one frame to the next.


ANIMATION SOFTWARE

- Frame-by-frame animation: each frame is manually drawn to reflect motion sequence.
 - Gives detailed control of each motion.
 - Time consuming process.
- Tween animation: computer generates in-between frames based on two designated key frames.
 - Motion tween
 - Path-based tween
 - Shape tween (morphing)
- Size tween
- Color tween
- Transparency tween

19

ANIMATION SOFTWARE

- Provide tools to support animation process.
 - Image-editing tools
 - Alignment tools and grids to control placement
 - Text tools
 - Basic sound control
 - Strategies to support interactivity.

PROGRAMMED ANIMATION

- Animators write commands and the computer generates the animation.
 - Requires knowledge of programming and mathematical techniques to specify motion.
- Advantages:
 - File sizes are smaller.
 - Animations load and play faster.
 - Reduces bandwidth and processor demands.
 - Efficient creation of different versions of animated sequence.

PROGRAMMED ANIMATION

- Supports complex forms of interactivity.
 - Computer games take input from the user and animate the objects
 "on the fly."
- Scripting languages frequently used to generate programmed animations:
 - Lingo
 - Actionscript
 - Javascript

23

3-D ANIMATION

- Elements of 3-D animation set in motion include:
 - Objects
 - Sounds
 - Cameras
 - Lights.

- Techniques are similar to 2-D animation:
 - Key frame
 - Tween motion.
- Complex motion may involve using models of humans and animals.

MOTION CAPTURE

- Also called performance animation.
 - Technique of recording motion of actual objects and mapping these motions to a computer-generated animated character.
 - Performers have sensors to track the motion of various body parts as they create the action sequences.
- Used to capture complex natural motions that are difficult to create.

25

FORWARD KINEMATICS

- Kinematics is study of motion of bodies or systems of bodies.
 - The motion of one part generates related motion in others.
- Animator must adjust all motion in all related parts of the body.
 - Simple to implement.
 - Models easily defined.
 - Computer processing is minimal.
 - Quality of motion depends on animator's skill.
 - Animation is time consuming process.

INVERSE KINEMATICS

- Motion of one body part produces related motions in other body parts.
 - Simplifies animator's work and ensures consistent, realistic motion.
- Software embodies the knowledge of anatomical motion.
 - Requires innovative programming.
 - Demands more processing power than forward kinematics.
- · Significantly reduces work of animator.

27

ANIMATING WITH PHYSICS

- Software can automatically generate motions based on properties of object and laws of physics.
- Will free animators from more tedious tasks of 3-D animation and produce more realistic content.
 - Animators can concentrate on developing stories and characters.

COMPLETING THE ANIMATION

- Rendering creates the final animation frames by applying:
 - The modeling
 - Surface definition
 - Scene composition as specified by animator

29

RENDERING OPTIONS

- Pre-render
 - Requires enormous processing resources and time for animated movies.

Shrek 1 in 2001 used about 5 million CPU render hours.

Shrek 2 in 2004 used 10 million CPU hours

Shrek 3 in 2007 used 20 million CPU hours.

- Computer carries out complex calculations to implement the object properties, lighting, camera angles and motions.
- · Render in real time
 - Computer produces animation immediately.
 - Used in video games and highly interactive 3-D animations.

ANIMATION TIPS & GUIDELINES

- Prepare for a learning curve.
 - Animation programs are more difficult to master.
- Design for delivery.
 - Minimize file size if delivery is for Web.
- Consider clip animation to reduce costs.
- Consult the tradition in developing motion.
 - Cycles, holds, shooting on twos, tweening, stretch and squash, ease in
 & ease out, overshoot & overlap motion are traditional techniques.