

CHAPTER HIGHLIGHTS

- Moving Pictures
- Analog video
 - Formats
 - Standards
- Digital video
 - Quality factors:
 - Screen resolution
 - Frame rate
 - Compression strategies
 - File formats

- Digital video sources
 - Convert analog source
 - Create original video.
 - Shooting
 - Editing
 - Rendering
- Digital video camera considerations
- Guidelines for video in multimedia

MOVING PICTURES

- Film and video are a series of rapidly displayed still pictures.
 - Each image captures an instance of motion.
 - Persistence of vision results in perception of flow of motion.
- Analog film records images on transparent medium projected onto a screen.
- Analog video records images as continuously varying electrical voltages that produce images on a CRT or projection screen.

ANALOG VIDEO FORMATS

- Analog video: a broadcast television standard.
 - NTSC: television standard in U.S. (1952).
 - Replaced by new digital standard in 2009.
 - PAL: standard in England and much of Europe.
 - SECAM: standard in France and Russia.

VIDEO COLOR SIGNALS

- Composite color signal.
 - Combines two signals:

Video captured in component color.

NTSC standard = composite color.

Computer monitors = component color.

- Luminance or amount of brightness in the image.
- · Chrominance or color hue in the image.
- Inexpensive to create and transmit.
- Component color signal.
 - Colors are represented separately.
 - Red, Green, Blue light signals combine to create color range.
 - Better color quality.

5

VIDEO IMAGE

- Video image is created by an electron gun in the CRT.
- The electronic signal illuminates lines of phosphorus dots on the screen.
- Methods to illuminate or scan the image:
 - Interlaced scan alternates the scanning between odd numbered lines in the frame and even numbered lines in the frame (NTSC).
 - Progressive scan scans each line of the image sequentially (computer monitor).

ANALOG TAPE STANDARDS

- Tape provides another mode for creating and distributing analog video.
- VCR tape formats:
 - VHS: low resolution(240 lines), hi-fi audio, composite color.
 - S-VHS: better resolution(400 lines), hi-fi audio, Y/C color.
 - 8mm: smaller tape, low resolution(230 lines), near-CD quality sound.
 - Hi8: increased resolution(400 lines), Y/C color.

DIGITAL TO ANALOG VIDEO

- Video frequently is created in digital format and converted to analog broadcast format.
- Considerations in this conversion include:
 - Aspect ratio
 - Both analog TV and many computers use 4:3 ratio.
 - Raster scan.
 - TV uses interlaced scanning.
 - · Computers use progressive scanning.

DIGITAL TO ANALOG VIDEO

- Other considerations for conversion.
 - Display Area
 - TV does not display full image it receives.
 - Computers do display full image.
 - Color gamut
 - NTSC has smaller range of colors.
 - Computer RGB color is richer.
 - Computer colors that cannot be displayed on NTSC are "illegal colors."
- Digital TV resolves the differences.

DIGITAL TELEVISION

- DTV standard for U.S. (2009)
 - Video is created and delivered as digital.
 - Result: higher screen resolutions, richer colors, better video.
- DTV features include:
 - New aspect ratio for television screen (16:9).
 - Screen resolution choices:
 - SDTV 704 X 480 pixels (480i or 480p)
 - HDTV 1280 X 720 pixels (720p) OR 1920 X 1080 pixels (1080i or 1080p).

DIGITAL VIDEO MOVING PICTURES IN DIGITAL FORMAT.

DIGITAL VIDEO CHALLENGES

- Large file sizes
 - Every second of uncompressed digital video requires 30MB of storage.
- Hardware performance
 - Computer processors, memory and bus size must deliver digital video to the screen at full motion frame rates.
- · Distribution methods
 - DVD players.
 - High speed network bandwidth.

Digital video made possible by:

- Compression algorithms
- Fast computer hardwareDVD storage
- Gigabit bandwidth.

DIGITAL VIDEO QUALITY

- Three factors contribute to quality.
 - Screen resolution
 - Number of horizontal and vertical pixels used to present the video image.
 - Frame rate
 - Number of individual video frames displayed per second.
 - Compression method
 - Algorithm used to compress and decompress the video.
- Developers can adjust these factors to optimize delivery of digital video

13

SCREEN RESOLUTION

- Screen resolution (or output resolution) impacts processing, storage, and transmission requirements.
- High quality digital video (DV) format is 720 X 480 (or 350,000 pixels at rates of 30fps).
 - CD-Rom and Internet are too slow to deliver that much data.
 - Solution: reduce the display size, which reduces the number of pixels/second to output.

FRAME RATE

- Standard frame rate for NTSC video is 29.97 frames per second (fps).
- Reducing the frame rate reduces the data to be transferred.
 - Video on Internet is often delivered at 15fps.
- Cautions:
 - Lowering frame rate will slow delivery of individual images and drop out frames of video.
 - Result could be "jerky" motion.

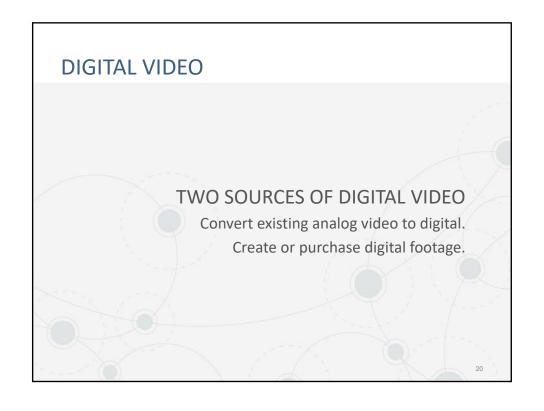
15 fps is a threshold for smooth motion video.

15

COMPRESS THE VIDEO

- Compression is key to successful delivery of digital video.
- Three strategies for compressing video:
 - Intra-frame: re-encodes within the frame.
 - Inter-frame: eliminates intervening frames saving only changes between the frames.
 - Variable bit rate (VBR)
 - CBR (constant bit rate) assigns same number of bits per second to all parts of the video.
 - VBR assigns more bits to complex scenes and fewer bits to simpler scenes.

COMPRESS THE VIDEO


- Choosing compression depends on:
 - Output destination
 - DVD
 - Internet
 - Editing capability
 - Detailed editing tasks
 - Limited editing tasks
 - Type of images in video
 - Complex scenes
 - Similar scenes

17

COMMON VIDEO CODECS

- MPEG
 - MPEG-1(short videos on Video CD—optical disc format).
 - MPEG-2 (transmission of video for television).
 - MPEG-4 (video over the web).
- M-JPEG (less-compressed higher quality files without interframe loss)
- RealVideo (proprietary codec for streaming video on web)
- DV (uses M-JPEG, suitable for authoring or archiving)

DIGITAL FILE FORMATS • Developers use these formats to render the final project in a form suitable for delivery: - D1 - D2 and D3 - DV - CD Video - DVD video - Quicktime - Video for Windows - Real Video.

MAKING DIGITAL FROM ANALOG

- Sampling from existing analog sources.
 - VCR
 - Laserdisc
- Requires digitizing boards on computers.
 - Sample the electrical currents produced by playing the analog image and sound source.
 - Store the resulting voltage levels as digital values.
- Video cameras can "record" directly from an analog source to make a digital video.

21

FACTORS THAT AFFECT SAMPLED VIDEO QUALITY

- Format of analog source.
 - S-VHS and Hi8 produce better digital video.
- Connector from the analog playback device to the digitizing device.
 - Composite RCA jacks mix the Y/C signal into a composite signal.
 - S-Video cable transmits luminance and chrominance data through separate wires for better quality capture.

STEP ONE: SHOOTING

- Shooting to record.
 - Captures ultimate form of video as shooting is done.
 - Used to capture event and share immediately with others.
- Shooting to edit.
 - Captures source video with editing in mind.
 - Acquire a variety of video clips that will later be trimmed, re-ordered, and blended into a single message.

25

DIGITAL VIDEO CAMERA CONSIDERATIONS

- CCD (Charge-Coupled Device).
 - Generates levels of electrical voltage based on variations in light intensity striking the surface.
 - Converts voltages into digital values to store data about each pixel in the image.
 - Size varies from 1/16 to 1/2 inch.
 - Larger CCDs are more expensive.

DIGITAL VIDEO CAMERA CONSIDERATIONS

- Number of CCDs
 - One CCD: Light is filtered and level of each filtered color is recorded.
 - Three CCDs: Light is split into three channels and each CCD records separate levels of RGB.
 - Produce clearer, more accurate color.
- Resolution of CCD
 - · Higher resolution delivers more accurate images.
 - Motion capture 720 X 480 is desired for DV.

Camera selection should always be based on resolution of CCD, not digital enlargement ratings.

27

DIGITAL VIDEO CAMERA CONSIDERATIONS

- Lens
 - Look for high quality lens from better vendors.
 - Ignore software zoom capabilities.
- · Light sensitivity
 - Lower lux ratings indicate the camera can operate in lower light conditions.
 - DV camcorders vary from 2 to 8 lux.
 - Supplemental lighting may be needed for dimly lit conditions.

DIGITAL VIDEO CAMERA CONSIDERATIONS

- Microphones: placement, type, and quality.
 - Omni-directional: optimized for broad range of background sound.
 - Unidirectional: record from narrowly defined location.
 - Placement on handle toward front of camera is preferred to avoid sound from camera itself.
 - Headphones give direct feedback of microphone effectiveness.

29

DIGITAL VIDEO CAMERA CONSIDERATIONS

- File format
 - Source video footage should be captured at highest resolution possible and not be highly compressed.
 - DV format:
 - Limits compression to 5:1
 - · Has relatively high resolution
 - · Uses M-JPEG compression.

SHOOTING BASICS

- Framing a Shot
 - Rule of thirds—widely embraced guideline for framing a video shot.
 - Preserves its interest.
 - Meaningfully relates it to action taking place.
 - Helps ensure adequate side and headroom.

31

SHOOTING BASICS

- Minimize camera motion.
 - Use tripod or steady surface to support camera.
 - Keep the camera still at all times.
- Camera controls for generating motion:
 - Pan—moving side to side.
 - Zoom—enlarge camera lens.

SHOOTING BASICS

- Take care of time code.
 - Format of hours, minutes, seconds, frames.
 - Time code becomes the frame address.
 - Editing software uses time code for splits, trims, transitions.
 - Camera records the code but
 - Code can be lost if user shifts to VCR mode to view video and advances to new location to continue shooting.
 - · Look for camera's "End Search" control to restart code.

33

SHOOTING BASICS

- Get the right shots.
 - Source video needs to cover all the important elements of the subject.
 - Videographer can use a variety of shots to tell the story.
 - Close up shot (CU)
 - Medium shot (MS)
 - Wide shot (WS)
 - Establishing shot
- Cutaway
- Point of view shot
- Reverse angle shot
- Over-the-shoulder shot

STEP TWO: EDITING

- Editing software options:
 - Consumer packages.
 - Prosumer applications.
 - Specialized video and film production.
- Features include:
 - Capture video from external source.
 - Arrange separate video clips.
 - Split and trim clips.
 - Add transitions and special effects.

35

EDITING OPERATIONS

- Splitting: dividing clip into multiple parts.
- Trimming: removing unwanted frames from clips.
- Transitions: effects to move into or out of a clip. These

include:

- Cut
- Fades
- Dissolve
- Wipe.

STEP THREE: RENDERING

- Process of applying the editing operations specified by the master video to produce a new, independent video file.
 - Can be processor intensive and time consuming process.
 - Output options are based on video's intended use. These include:
 - Video compression method
 - Resolution or screen size
 - · Frame rate and video data rate
 - · Audio data rate and audio format

37

RENDERING DECISIONS

- · Choice of a codec.
 - All video must be compressed.
 - Choice will determine quality of resulting video.
 - Variable bit rate encoding better than constant bit rate.
- Choice of screen resolution.
 - Vary depending on mode of delivery:
 - DVDs = 720X480
 - CD media = 320X240
 - Web = 240X180

RENDERING DECISIONS

- Choice of frame rate.
 - Impacts size of video file.
 - Web video must be significantly reduced for a wide viewing audience.
- · Choice of video data rate.
 - Low quality streaming web video = 20 30Kbps.
 - DVD high quality video = 9Mbps.
 - Typically set in the codec software preferences.

39

RENDERING DECISIONS

- Choice of audio compression and data rate.
 - If file size is not critical, use PCM format.
 - Also widely used are MP3 and Dolby Digital AC-3 formats.
- · Choice of computer hardware.
 - Video complexity could make render time over 1 hour per minute of video.
 - CPU speed, amount of RAM, size of hard drive can save you time.
 - Multi-core processors and distributed processing can also reduce the time for rendering.

GUIDELINES FOR VIDEO

- Shooting
 - Choose camera carefully.
 - Steady the camera.
 - White balance prior to shooting.
- Avoid shooting into light and backlit scenes.
- Limit pans and zooms.
- Frame the subject.
- Make inventory of required shots.

- · Use highest resolution available.
- Add external microphones.
- Use headphones to monitor sound quality.
- Record background sound for use in editing.
- · Don't break the time code.

41

GUIDELINES FOR VIDEO

- Editing
 - Protect source video.
 - Save a copy of the master video prior to rendering.
- Rendering
 - Match codec, resolution, frame rate, and data rate to intended use and delivery medium.
 - Use variable bit rate encoding when available.