

MULTIMEDIA GRAPHICS

- Challenges of computer images include:
 - Large file size
 - Slow downloads and processing
 - Possible inferior quality from original
 - File format compatibility
 - Images display differently on various monitors and printers

TRADITIONAL GRAPHICS

- Color image reproduction.
 - Use a series of four-color dots of transparent inks.
- CMYK
 - Cyan, magenta, yellow, black.
 - Small dots of color combinations can reproduce many different colors.

COLOR REPRODUCTION

Subtractive Color (CMYK)

- Color images on printed surface are formed using subtractive process.
 - Light is reflected from the printed surface.
 - Pigments that form image absorb some of the colors.
 - Remaining colors reach the eye to produce image.

Additive Color (RGB)

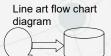
- Color images on computer monitor use additive process.
 - Varying amounts of Red, Green,
 and Blue light are added
 together to create the color.

5

2-D COMPUTER GRAPHICS

BITMAPPED IMAGES & VECTOR DRAWN GRAPHICS

BITMAPPED GRAPHICS


- Bitmapped/Raster graphics
 - Used for photorealistic and detailed drawings
 - Each element is a pixel
- Pixels
 - Pixels are small squares.
 - Assigned a binary code to define color.
 - More bits = more color possibilities
- 3 types of bitmapped graphics

7

BITMAPPED IMAGES - LINE ART

- Two colors, usually black and white.
 - Advantages
 - Clear, crisp image.
 - Small file size.
 - Uses include:
 - Charts
 - Illustrations
 - Diagrams

BITMAPPED IMAGES - GRAYSCALE

- Generally 8-bit images of 256 shades of gray.
- For images that require more detail than line art.
 - Advantages
 - Excellent representation of black and white photos.
 - Smaller files size than full color.
 - Lower printing costs than color.

9

BITMAPPED IMAGES - COLOR

- Consists of a pattern of colored pixels.
- Amount of color depends on bit depth of each pixel.
- Photo-realistic color requires 24-bit color.
 - Two methods to create color on a computer:
 - Identify a table of possible colors for the computer (Color Lookup Table).
 - Specify varying amounts of Red, Green, Blue.

MAKING COMPUTER COLOR

- 8-bit color presents a specific range of colors in a table.
 - PCs and Macs use different tables.
 - Web-safe table provides colors that display the same on all platforms.
- 24-bit color combines 8-bit values of red, green, or blue to create the result.
 - 16.7 million color possibilities.
- 48-bit color has 16-bit values
 - 281 trillion color possibilities.

11

BITMAPPED IMAGE QUALITY

- Image quality depends on spatial and color resolution.
 - Spatial resolution = density of pixels per inch.
 - Color resolution = number of colors each pixel can display.
- Spatial resolution measurements.
 - Monitor output is measured in ppi (pixels per inch).
 - Print output is measured as dpi (dots per inch).

SPATIAL RESOLUTION

- Higher spatial resolution
 - Captures more detail.
 - Pixels are smaller and closely packed.
 - Produces sharper, more accurate images.

- Captures less detail.
 - · Pixels are larger.
- Images appear fuzzy.
- High spatial resolutions yield large file sizes but better image quality.

13

DEVICE-DEPENDENCE

- Dimensions of an image depend on the resolution of the output device.
 - Monitors have low spatial resolution:
 - 72 ppi (Mac) or 96 ppi (PC).
 - Printers have higher spatial resolutions:
 - 300 dpi to 2400 dpi.

- Bitmapped images are devicedependent.
 - 300 ppi image prints the original size on 300 dpi printer.
 - Same image is greatly enlarged on a 72 ppi monitor.

COLOR RESOLUTION

- Bit-depth determines color resolution.
- Making the bit-depth choice:
 - Simple color images do not require many colors. Low bitdepth yields small file size.
 - Complex color images require millions of colors. High bitdepth yields better quality but larger files.

- Low color resolution may cause quantization and color banding.
 - Quantization leads to breaks in shades of continuous tone images.

15

RESAMPLING BITMAPPED IMAGE

- Process of increasing or decreasing the number of samples described in a file.
 - Often need to control spatial resolution of bitmapped images.
 - 72 ppi for web display.
 - 300 ppi for laser output.
- Upsampling: adding samples to the file. (can degrade img)
- Downsampling: reducing the samples in the image. (can produce smaller images that maintain good quality. Capture at highest resolution and downsample as needed.

RESIZE without RESAMPLING

- A bitmapped image can be resized without resampling.
 - Enlarging a printout may produce acceptable results.
 - Caution: excessive enlargement will distort the image with blocky, mottled surface appearance.
 - Reducing the image size without resampling can produce high quality printouts.
 - Pixels are packed more closely together.

17

RESIZE without **RESAMPLING**

Excessive enlarging without resampling can lead to distorted

COLOR RESOLUTION

- Indexing
 - A specific palette of colors is identified to optimize the appearance of lower color resolution image.
 - Two methods to create the index of colors:
 - Adaptive
 - Perceptual
- Dithering
 - Combining pixels of different colors to produce another color not available in the indexed palette.
 - Improves image quality without increasing bit depth.

19

BITMAPPED IMAGE SOURCES

- Paint programs (Paint, Photoshop)
- Digital cameras
- Scanner
- Clip Art
- Screen Grab

BITMAPPED FILE FORMATS

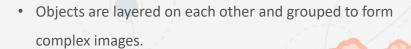
- - PICT
 - BMP
 - TIFF
 - JPEG
 - GIF
 - PNG-8, PNG-24

- Common graphic file formats are: Compression of bitmapped graphics are:
 - Lossy
 - Lossless

What form of compression do each of these formats use?

VECTOR-DRAWN GRAPHICS

- Vector: a line with length, curvature, and direction.
- Vector graphics: images created from mathematically defined shapes.
- Drawing programs: software used to create vector graphics.
- Main advantages:
 - Images can be enlarged without distortion.
 - Small file size.



VECTOR-DRAWN GRAPHICS

• Draw programs use tools that resemble those of a draftsman:

hi

- Fixed shapes
- Bezier curves
- Pen

- Grouping joins individual shapes.
- Ungrouping restores image to separate shapes.

23

DEVICE INDEPENDENCE

- Vector graphics can be used with different devices without altering the image dimension.
 - Printers and monitors preserve the original dimension of the image.

VECTOR to BITMAPPED & BACK AGAIN

- Autotracing: software analyzes a bitmapped image for shapes and converts the image to a vector graphic.
- Rasterizing: samples the vector image and saves it in bitmapped form.
 - Vector graphics displayed on a screen can be screen grabbed and saved as a bitmapped graphic.

Bitmapped

Autotraced

25

VECTOR GRAPHIC FILE FORMATS

- Files are saved in native format or general purpose formats.
 - Native format: dependent on the application.
 - General purpose: can be used in many applications.
 - · Vector-only:

EPS—Encapsulated Postscript.

PDF— Portable Document Format.

Metafiles:

SVG—Scalable Vector Format.

ADVANTAGES

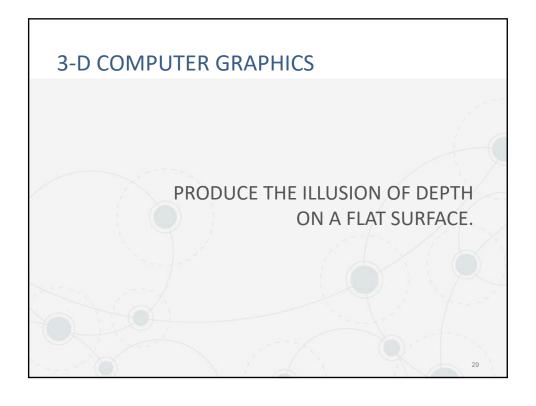
Bitmapped Images

- Represent complex images.
- Full-featured photo editing.
- Wide range of artistic effects.
- Precise editing.

Vector Images

- Smooth scaling and reshaping.
- Ease of editing objects in layers.
- Low file size.
- Device-independent.

27


DISADVANTAGES

Bitmapped Images

- Large file sizes.
- Loss of precise shapes when scaled or rotated.
- Device-dependent.

Vector Images

- Inaccurate, incomplete
 representation of complex
 contone images.
- No photo-editing capability.
- Limited artistic control.

3-D GRAPHICS

- Computer becomes a virtual partner in the creative process.
- Four interconnected steps in creating 3-D images:
 - Modeling
 - Surface definition
 - Scene composition
 - Rendering

STEP 1: MODELING

- Process of specifying the shape of the 3-D object.
- Two major approaches to modeling:
 - Combine cubes, cones, cylinders and other 3-D shapes supplied with the graphics program - modeling with primitives.
 - Use a modeler to create shapes directly.

31

3-D MODELING

Modelers have ability to:

Extrude: extends the shape perpendicular to the shapes outline

Lathe: a shape is rotated around a defined axis to create the 3-D object.

STEP 2: SURFACE DEFINITION

- Surface definition: where textures are applied to the model's surface.
 - Menu choices of surfaces include wood, glass, metal, skin.
 - Can vary the appearance of surfaces with color, opacity, reflectivity.
- Custom surfaces include:
 - Image maps
 - Bumb maps.

33

STEP 3: SCENE COMPOSITION

- Objects are arranged, backgrounds introduced, environmental effects added, and lighting established.
- Lighting choices in a scene include:
 - Omni lights
 - Directional lights
 - Spot lights
 - Volumetric light.
- Adjust lighting with brightness, color, and attenuation.

STEP 4: RENDERING

- Computer creates the scenes specified by the artist.
- Two main approaches:
 - Pre-rendering
 - Used primarily for still graphics, animation, and video with limited interactivity.
 - Real-time rendering
 - Used for highly interactive 3-D applications such as video games.

35

RENDERING (cont.)

- Forms of rendering to create test scenes in 3-D graphics:
 - Wire frame rendering
 - A series of lines used to define the shape of an object without defining its
 - Useful to test the basic geometry and placement of an object.

RENDERING (cont.)

- Surface rendering applies lighting and shaders to the object.
 - Flat shaders, has imperfections but a fast render process.
 - Smooth shaders, better quality surface.
 - Ray tracing, traces each ray of light as it interacts with objects on a scene.
 - Radiosity, recreates the changes that result from interaction of different wavelengths of light.

37

FINAL RENDER

- Final rendering translates 3-D information to a 2-D image.
- Rendering engines apply effects to the finished product such as shadows, reflections, bumps, transparencies and lighting considerations.
- Successful rendering requires processing power, time, and artistic talent.

CREATING WORLDS

- 3-D graphics are powerful tools to create reproductions of the world around us.
- Fantasy worlds come alive with creative artists and software applications such as Maya, Blender, Zbrush, 3-D StudioMax.

39

GUIDELINES FOR USING GRAPHICS

- Identify purpose of the graphic.
- Choose best format for each image.
- Match graphic design to purpose.
- · Locate graphics.

- Preserve image quality.
- Economize.
- Organize and store graphics files for later use.